In this paper, a non-resonant quartz-enhanced photoacoustic spectroscopy (NR-QEPAS) sensor is reported for the first time, to the best of our knowledge. The non-resonant photoacoustic cell (PAC) serves as the region where the photoacoustic effect occurs. NR-QEPAS offers several advantages, including flexible quartz tuning fork (QTF) positioning, frequency-matching-free operation, and simplified optical alignment. A self-designed T-head QTF was utilized as an acoustic wave transducer. The sound pressure characteristics of the non-resonant PAC were simulated using the finite element method. A near-infrared distributed feedback (DFB) diode laser with a wavelength of 1650.96 nm was selected as the excitation source. Methane (CH4) was chosen as the target gas to validate the designed sensor’s performance. The experimental results showed that the designed non-resonant PAC worked in the plane wave state, and the sound pressure in the cavity was nearly uniform. The minimum detection limit (MDL) of the designed NR-QEPAS sensor for CH4 detection could be 1.09 ppm (1 ppm = 10-6) when the average time was 760 s.
We demonstrate a high-resolution mid-infrared (MIR) dual-comb interferometer (DCI) using spectral interleaving. By generating electro-optic frequency combs (EOFCs) at 1550 nm via a dual-drive Mach-Zehnder modulator (DD-MZM) and employing injection locking to create a linearly swept lightwave spanning 18 GHz, we achieve gapless spectral interleaving. This swept lightwave serves as the seed for dual EOFCs with a 1 MHz repetition rate difference, which are subsequently converted to the MIR region (3.3 µm) via difference frequency generation (DFG). Experimental results demonstrate a dual-comb spectrum spanning 486 GHz with a 100 MHz resolution, validated by direct detection and demodulation.
A hydrogen peroxide (H2O2) detection system is demonstrated with multi-pass tunable diode laser absorption spectroscopy using a 75 m Herriott absorption cell. The system utilizes an ∼8 µm continuous wave distributed feedback quantum cascade laser (CW DFB-QCL) targeting a prominent H2O2 line at 1253.1 cm-1 within the fundamental absorption band. A wavelength modulation spectroscopy with the first harmonic normalized second harmonic (WMS-2f/1f) detection method is employed to eliminate laser light intensity fluctuations. Calibration of the system is conducted by means of chemical titration to establish the correlation between the peak value of the 2f/1f signal and H2O2 concentration. An Allan–Werle deviation analysis shows that a minimum detection limit (MDL) of 2.9 ppb (1 ppb = 10-9) for H2O2 is achieved with an average time of 147 s. To the best of our knowledge, this is the lowest detection limit for H2O2 at the wavenumber of 1253.1 cm-1. The system exhibits robust resistance to interference from other gases, especially water vapor (H2O), making it suitable for measuring the residual concentration of H2O2 post-sterilization and the concentration of H2O2 in the atmosphere.
A thulium-doped fiber amplifier-enhanced photoacoustic spectroscopy (TDFE-PAS) sensor was developed for carbon dioxide (CO2) detection utilizing a 2004 nm distributed feedback (DFB) laser. The thulium-doped fiber was in-band pumped by a 1567 nm source to amplify the optical power of 2004 nm to enhance the photoacoustic excitation. As a result, the photoacoustic signal was enhanced over 101 times. Based on a 7.9 mL differential PA cell, the sensor achieved a linearity of R2 = 0.9997 on CO2 detection in a wide concentration range of 0–10,000 ppm (part per million). The noise equivalent detection limit was evaluated to be 190 ppb (part per billion) at a response time of 10 s.
In this Letter, a quartz-enhanced photoacoustic spectroscopy (QEPAS) gas sensor based on a single off-beam acoustic micro-resonator (AmR) and dual quartz tuning forks (QTFs) was demonstrated for the first time, to our knowledge. The sensor offers advantages of a compact sensing structure and high acoustic energy utilization efficiency. The key parameters of the designed off-beam AmR were optimized based on standing wave enhancement characteristics. Water vapor (H2O) in the environment was chosen as the target gas to investigate the sensor performance. Under identical experimental conditions, the reported sensor achieved 15.02 times improvement in detection sensitivity compared to the bare QTF-based sensor system, as well as a 1.53 times enhancement over the traditional off-beam QEPAS technique.
A highly sensitive carbon dioxide (CO2) sensor based on light-induced thermoelastic spectroscopy (LITES) utilizing a self-designed low-frequency quartz tuning fork (QTF) and a fiber-coupled multipass cell (MPC) is reported in this paper. The QTF with a low resonant frequency of 8675 Hz and a high Q factor of 11,675.64 was used to improve its energy accumulation time and the sensor’s signal level. The MPC with the fiber-coupled structure and optical length of 40 m was adopted to significantly increase the gas absorbance and reduce the optical alignment difficulty as well as improve the robustness of the sensor system. A distributed feedback (DFB), near-infrared diode laser with an emission wavelength of 1.57 µm was used as an excitation source. The experimental results showed that this CO2-LITES sensor had an excellent linear response to CO2 concentrations. The minimum detection limitation (MDL) of this CO2-LITES sensor was obtained to be 445.91 ppm, and it could be improved to 47.70 ppm (parts per million) when the integration time of the system reached 500 s. Further improvement methods for the detection performance of such sensors were also discussed.
The lightwave field possesses several dimensional properties, including amplitude, spectrum, phase, and polarization. Multi-dimensional measurements of lightwaves have diverse applications ranging from remote sensing to analytical chemistry. However, achieving high-resolution simultaneous multi-dimensional measurement of lightwaves remains challenging. In this work, we demonstrate an all-fiber spectropolarimeter based on a speckle pattern obtained from the end of a multi-mode fiber. The proposed system simultaneously achieves a spectral resolution of 100 pm and a polarization resolution of 0.001437. The polarization measurement errors for three Stokes parameters are 3.37%, 1.01%, and 0.84%, respectively, with a mean squared error of 5.3 × 10-5. This work provides novel potential for high-resolution and accurate multi-dimensional lightwave field measurements.
A simple and robust multiple wavelength frequency stabilization system is demonstrated using a single transfer cavity and a 1062-nm ultra-stable laser for all the lasers used in a mercury optical lattice clock. Offset sideband locking is employed to tune the laser frequency while dichroic mirrors and differentiated modulation frequencies are utilized for the Pound–Drever–Hall locking of four-color lasers. For the most demanding lasers at 1015 nm and 725 nm, the line width of the beat note is reduced to 27 kHz and 17 kHz, respectively. The frequency fluctuation for the transfer-locked 1015-nm laser is less than 10 kHz, which is much better than the lasers locked to an atomic spectrum. Using its high stability of 5 × 10-12 over 100 s, the transfer-locked 1015-nm laser is employed for low-noise frequency modulated saturated absorption spectroscopy. This approach could also be used in various situations for the research of optical clocks, Rydberg atoms, laser cooling of molecules, and quantum computation with neutral atoms.
The dynamics of water within a nanopool of a reverse micelle is heavily affected by the amphiphilic interface. In this work, the terahertz (THz) spectra of cyclohexane/Igepal/water nonionic reverse micelle mixture are measured by THz time-domain spectroscopy and analyzed with two Debye models and complex permittivity of background with volume ratios. Based on the fitted parameters of bulk and fast water, the molar concentration of all kinds of water molecules and hydration water molecule number per Igepal molecule are calculated. We find that slow hydration water has the highest proportion in water when the radius parameter ω0<10, while bulk water becomes the main component when ω0≥10. The feature radius ratio of nonhydrated and hydrated water to total water nanopool is roughly obtained from 0.39 to 0.85 with increasing ω0.
This paper investigates the combination of laser-induced breakdown spectroscopy (LIBS) and deep convolutional neural networks (CNNs) to classify copper concentrate samples using pretrained CNN models through transfer learning. Four pretrained CNN models were compared. The LIBS profiles were augmented into 2D matrices. Three transfer learning methods were tried. All the models got a high classification accuracy of >92%, with the highest at 96.2% for VGG16. These results suggested that the knowledge learned from machine vision by the CNN models can accelerate the training process and reduce the risk of overfitting. The results showed that deep CNN and transfer learning have great potential for the classification of copper concentrates by portable LIBS.
In the field of absorption spectroscopy, the multipass cell (MPC) is one of the key elements. It has the advantages of simple structure, easy adjustment, and high spectral coverage, which is an effective way to improve the detection sensitivity of gas sensing systems such as tunable diode laser absorption spectroscopy. This invited paper summarizes the design theory and the research results of some mainstream types of MPCs based on two mirrors and more than two mirrors in recent years, and briefly introduces the application of some processed products. The design theory of modified ABCD matrix and vector reflection principle are explained in detail. Finally, trends in its development are predicted.
We present a non-contact optical investigation of laser-induced plasma at moderate Ar pressure ranging from 1 to 100 Pa. The significant shock front and spatial fractionation among the different charged ions are demonstrated at the pressure of 20 Pa. The collisions between Si IV ions and ambient Ar atoms generate distinct and excited Ar II ions, fresh Si III ions, and electrons at the dense layer. The electron density peaks at the position of the shock front, indicating that the collision that yields electrons is dominant over the recombination process in the region of the shock layer and its immediate vicinity.
The distribution of metal nanoparticles on the surface of a surface enhancement Raman scattering (SERS)-active substrate plays a prominent part in not only the enhancement of Raman vibration signal, but also the spectrum uniformity. Here, a facile method to fabricate SERS substrates with excellent homogeneity and low cost was proposed, in which a lyotropic liquid crystal soft template was introduced for the coordinated growth of the silver nanoflowers in the process of electrochemistry deposition. Simulation was carried out to illustrate the dominated influence of the distance of electrodes on the deposited nanoparticle number. Two kinds of conductive materials, silver plate and indium tin oxide (ITO) glass, were chosen as the anode, while the cathode was fixed as ITO glass. The simulated conjecture on the effect of electrode flatness on the uniformity of deposited nanoparticles in silver is experimentally proved. More importantly, it was demonstrated that with a relatively smooth and flat ITO glass anode, a SERS substrate featuring higher spectrum uniformity could be achieved. This work is of great significance to the actual applications of the SERS substrate for quantitative detection with high sensitivity.
Conventional wavelength modulation spectroscopy (WMS) is vulnerable to the influence of low-frequency noise. Accuracy of the method highly depends on the performance of the costly lock-in amplifier. In this article, we report a new and effective method for reconstructing second-harmonic signals through WMS based on fast Fourier transform (FFT). This method is less disturbed by low-frequency noise because it does not use a low-frequency ramp wave. Formulation and detection procedures were presented. The discrete second-harmonic waveform can be obtained by continuously changing the DC signal and FFT analysis in this method. Second-harmonic waveforms acquired by the two means are generally consistent. The experimental study validates the obtained gas concentration from 5% to 30%, showing a good linear relationship by the proposed method. The maximum relative error on concentration extraction is 2.87%; as for conventional WMS, this value is 4.50%. The developed measurement method may have potential in computed tomography.
In this paper, a new optical analysis method for plasma characterization is proposed. Plasma characteristics are obtained directly by measuring the plasma luminous color, rather than the complex spectral diagnosis method, which is difficult to obtain at high speed. By using the light transmittance curve of the human cornea, the RGB coordinates are calculated from the measured plasma spectrum data. Plasma characteristics are diagnosed using the Boltzmann plot method and the Stark broadening method. The corresponding relationship of the electron temperature, electron density data points, and luminous color is established and analyzed. Our research results indicate that this optical analysis method is feasible and promising for fast plasma characterization.
This study proposes a method based on material dispersion models to computationally simulate terahertz (THz) time-domain spectroscopy signals. The proposed method can accurately extract the refractive indices and extinction coefficients of optically thin samples and high-absorption materials in the THz band. This method was successfully used to extract the optical constants of a 470-μm-thick monocrystalline silicon sample and eliminate all errors associated with the Fabry–Pérot oscillation. When used to extract the optical constants of a 16.29-mm-thick polycarbonate sample, our method succeeded in minimizing errors caused by the low signal-to-noise ratio in the extracted optical constants.
We demonstrate a two-component detection of a coherent population trapping (CPT) resonance based on virtually imaged phased array (VIPA). After passing through a VIPA, the two coupling lights with different frequencies in the CPT experiment are separated in space and detected individually. The asymmetric lineshape is observed experimentally in the CPT signal for each component, and the comparison with the conventional detection is presented. The shift of the CPT resonant frequency is studied with both the two-component and one-component detections. Our scheme provides a convenient way to further study the CPT phenomenon for each frequency component.
In this Letter, we use electromagnetic simulations to systematically investigate the influence of a thin dielectric layer on the local electric field and molecular spectroscopy in the plasmonic junction. It is found that both the intensity and spatial confinement of the electric field and molecular spectroscopy can be significantly enhanced by applying a dielectric layer with large dielectric constant. We also discuss the optimal dielectric layer thickness to obtain the largest quantum efficiency of a dipole emitter. These results may be instructive for further studies in molecular spectroscopy and optoelectronics in plasmonic junctions.
Two-dimensional (2D) perovskites exhibit broadband emission due to strong exciton–phonon coupling-induced self-trapped excitons and thus would find important applications in the field of white-light emitting devices. However, the available identifying methods for self-trapped excitons are currently rather limited and complex. Here, we identify the existence of self-trapped excitons by Raman spectroscopy in both excited and non-excited states. Under excited states, the shifting of the Raman peak indicates the presence of the lattice distortion, which together with the extra Raman scattering peak reveals the presence of self-trapped excitons. Our work provides an alternative simple method to study self-trapped excitons in 2D perovskites.
Carbon is hard to be sensitively detected in laser-induced breakdown spectroscopy (LIBS). The optical emission can be significantly enhanced by resonantly exciting CN radicals in the plasma center using LIBS assisted with laser-induced fluorescence (LIBS-LIF). However, the nitrogen source for CN formation is provided by ambient gas. Therefore, we propose a new approach of periphery excitation in plasma to improve CN fluorescence. The optical and spatial characteristics of CN radicals in plasma were discussed. A fluorescence map was established by combining focal point location and fluorescent intensity, demonstrating that plasma periphery had 4.2 times stronger fluorescence than the center.
This study provides a rapid method for quantification of mineral oil in rapeseed oil using near-infrared spectroscopy. The data were processed by direct orthogonal signal correction (DOSC), successive projections algorithm (SPA), partial least squares, and principal component regression (PCR). Good correlation coefficients (R) of 0.998 and root-mean-squared error (RMSE) of 0.005 were obtained, and the DOSC-SPA-PCR model was identified as the optimal method. A satisfactory accuracy with R and RMSE of prediction by DOSC-SPA-PCR of 0.990 and 0.006, was obtained. The results demonstrate that the proposed methodology is a promising method for the rapid quantitative detection of mineral oil in vegetable oil.
An experimental investigation of two-color polarization spectroscopy (TCPS) is presented based on the cesium 6S1/2 – 6P3/2 – 8S1/2 (852.3 nm + 794.6 nm) ladder-type system in a room-temperature vapor cell. The dependency of line shapes of TCPS on the power of a 852.3 nm pump and a 794.6 nm probe laser is measured in detail, and we confirm that the linewidth of TCPS in a counter-propagating configuration between the pump and probe laser beams is obviously narrower than that of a co-propagating configuration, due to the atomic coherence effect. It is helpful for laser stabilization of the excited state transition using TCPS without frequency modulation.
High-resolution frequency-domain spectroscopy (FDS) is set up using a coherent and continuous wave terahertz (THz) emitter and receiver. THz waves are generated and detected by two photomixers with two distributed feedback (DFB) lasers. Atmospheric water vapor with different relative humidity is systematically investigated by the FDS. A high-frequency resolution of ~14 MHz is obtained with the help of Hilbert transformation, leading to a well resolved and distinct transmittance characterization of water vapor. Compared with conventional THz time-domain spectroscopy, the high-resolution continuous wave THz spectrometer is one of the most practical systems in gas-phase molecular sensing, identification, and monitoring.
Spontaneous optical emission properties of laser-produced plasma during laser damage events at input and exit surfaces of fused silica were retrieved and compared. We show that plasma at the input surface is much larger in size and exhibits significantly higher electron number density and excitation temperature, even when smaller laser energy was used. This effect was attributed to the stronger laser–plasma coupling at the input surface. In addition, a strong continuum background containing three peaks at 1.3 eV, 1.9 eV, and 2.2 eV was observed at the exit surface, and possible origins for this effect are also discussed.
We demonstrate a novel type of miniature spectrometer based on a Fourier transform spectrometer (FTS) chip with a dense output array and a commercial photodetector (PD) array. The FTS chip has an output array cycle of 20 μm and consists of 51 Mach–Zehnder interferometers (MZIs), and the PD array is a commercial linear charged coupled device (CCD). An achromatic triplet lens is used to image the MZI output interferogram onto the CCD with a small aberration. Our experiment result shows that a free spectral range (FSR) from 489 nm to 584 nm and a retrieved spectral resolution of 3.5 nm at 532 nm are obtained. The achieved properties show that our spectrometer has the potential to outperform the best commercial compact one in terms of most performance indices.
The intensities of fluorescence spectral lines of Ca atoms and Sr atoms in two different hollow cathode lamps (HCLs) are measured by element-balance-detection technology. In the wavelength range of 350–750 nm in the visible spectral region, using the individual strongest line (Ca 422.67 nm, Sr 460.73 nm) as the bench mark, the population ratios between the excited states of Ca atoms and Sr atoms are calculated by rate equations and the spontaneous transition probabilities. The HCLs with populations at excited states can be used to realize the frequency stabilization reference of the laser frequency standard.
We present a specific-window method to subtract the interference of water vapor on terahertz frequency-domain spectroscopy (THz-FDS) at ambient temperature and pressure. A continuous-wave spectrometer based on photomixing was utilized to obtain THz-FDS of methanol vapor in the range of 50–1200 GHz. The distinctly spaced absorption features in the neighborhood of atmospheric windows of transparency were selected to perform linear fitting versus the calculated absorption cross section and obtain the concentration of methanol. Furthermore, the gradually decreased methanol vapor was quantified to demonstrate the reliability of the method.
Using a measurement system based on fluorescence induced by variable pulse light, photosynthesis parameters of chlorella pyrenoidosa are obtained, employing single-turnover and multiple-turnover protocols under dark-adapted and light-adapted conditions. Under the light-adapted condition, σPSII′ is larger, and Fv′/Fm(ST)′ and Fv′/Fm(MT)′ are smaller than those of the dark-adapted condition, but the corresponding parameters possess good linear correlations. Fm(MT), Fm(MT)′, Fv/Fm(MT), and Fv′/Fm(MT)′, which are measured using the multiple-turnover protocol, are larger than those of the single-turnover protocol. The linear correlation coefficient between Fm(ST) and <inline-for
In this Letter, a miniature wearable Raman spectroscopy system is developed. A wearable fiber-optic probe is employed to help the stable and convenient collection of Raman spectra. A nonlinear partial least squares model based on a multivariate dominant factor is employed to predict the glucose level. The mean coefficients of determination are 0.99, 0.893, and 0.844 for the glucose solution, laboratory rats, and human volunteers. The results demonstrate that a miniature wearable Raman spectroscopy system is feasible to achieve the noninvasive detection of human blood glucose and has important clinical application value in disease diagnosis.
A light purplish red sapphire is heat treated in an airtight crucible. The sample changes little in color after receiving heat treatment at 1100°C, but turns to light blue and blue after being treated at 1200°C and 1300°C, respectively. Before heating, the UV-VIS absorption spectra of the sample are dominated by the 551 nm broad absorption band contributed by the d-electron transition A24→T24 of Cr3+. After heating, the UV-VIS absorption spectra are dominated by the 563 nm broad absorption band contributed by the intervalence charge transfer of Fe2+ Ti4+. The x ray photoelectron spectroscopy test reveals that the Fe2+ and Ti4+ ion contents increase with increasing temperature. The sapphire changing from light purplish red to blue in the heating process is owing to the fact that the Fe2+ and Ti4+ contents grow and the intervalence charge transfer of Fe2+ Ti4+ selectively absorbs UV-VIS light.
The electroluminescent characteristics of blue organic light-emitting diodes (BOLEDs) fabricated with doped charge carrier transport layers are analyzed. The fluorescent blue dopant BCzVBi is doped in an emissive layer, hole transport layer (HTL) and electron transport layer (ETL), respectively, to optimize the probability of exciton generation in the BOLEDs. The luminance and luminous efficiency of BOLEDs made with BCzVBi-doped HTL and ETL increase by 22% and 17% from 11,683 cd/m2 at 8.5 V and 6.08 cd/A at 4.0 V to 14,264 cd/m2 at 8.5 V and 7.13 cd/A at 4.0 V while CIE coordinates of (0.15, 0.15) of both types of BOLEDs remained unchanged. The electron mobility of BCzVBi is estimated to be 1.02×10 5 cm2/Vs by TOF.
A background removal method based on two-dimensional notch filtering in the frequency domain for polarization interference imaging spectrometers (PIISs) is implemented. According to the relationship between the spatial domain and the frequency domain, the notch filter is designed with several parameters of PIISs, and the interferogram without a background is obtained. Both the simulated and the experimental results demonstrate that the background removal method is feasible and robust with a high processing speed. In addition, this method can reduce the noise level of the reconstructed spectrum, and it is insusceptible to a complicated background, compared with the polynomial fitting and empirical mode decomposition (EMD) methods.
We investigate the temperature dependence of the emission spectrum of a laser-induced semiconductor (Ge and Si) plasma. The change in spectral intensity with the sample temperature indicates the change of the laser ablation mass. The reflectivity of the target surface is reduced as the sample is heated, which leads to an increase in the laser energy coupled to the surface of the sample and eventually produces a higher spectral intensity. The spectral intensities are enhanced by a few times at high temperatures compared with the cases at low temperatures. The spectral intensity of Ge is enhanced by 1.5 times at 422.66 nm, and 3 times at 589.33 nm when the sample temperature increases from 50°C to 300°C. We can obtain the same emission intensity by a more powerful laser or by less pulse energy with a higher sample temperature. Based on experimental observations we conclude that the preheated sample can improve the emission intensity of laser-induced semiconductor plasma spectroscopy.
We demonstrate theoretically and experimentally how changes of a terahertz (THz) beam induced by the sample affect the accuracy of the determination of THz dielectric properties in THz time-domain transmission spectroscopy (TDTS). We apply a Gaussian beam and the ABCD matrix formalism to describe the propagation of the THz beam in a focused beam setup. The insertion of the sample induces a focus displacement which is absent in the reference measurement without a sample. We show how the focus displacement can be corrected. The THz optical properties after focus displacement correction reported in this Letter are in quantitative agreement with those obtained using collimated beam THz–TDTS in previous work.
We experimentally observe polarization spectroscopy (PS) of the S01-P31 transition of mercury atom gases at 253.7 nm. The PS signal can be observed in all six richly abundant isotopes and the PS signal of six transitions for laser cooling are all clear and of a dispersive line shape. The optimized pump power and probe power are found for the PS of Hg202. We find the linearly polarized component in the pump beam will distort the original PS signal due to the use of linear PS. Consequently, the purity of the pump beam is crucial to laser frequency stabilization by PS.
A portable infrared spectral radiance measurement apparatus without the cooling based on PbSe detectors is designed to measure the spectral radiance of the object in the wavelength range from 2.1 to 4.1 μm. Cores Luxell 256 module is applied which integrates 256 pixel line array PbSe detectors, amplifiers, analog-to-digital convertors, and Universal Serial Bus output interface. Electric aperture is applied to eliminate the effect of temperature drift. Wavelength and response function of the apparatus is calibrated with the blackbody. Results show that the wavelength resolution is 10 nm. The relative error of measured spectral radiance is below 2.3%.
We present a Herriott-type multipass laser absorption spectrometer enhanced by optical heterodyne detection. The proposal is demonstrated by measuring the spectra of water vapor molecule in the region from 12247.6873 to 12249.6954 cm-1. Compared with direct absorption spectroscopy, the signal-to-noise ratio is improved nearly one magnitude of factor by combining with the optical heterodyne spectroscopy and extra weak absorption lines are observed. The minimum detectable absorption is estimated at 4.36×10-8 cm-1and the measured line shape dominated by Doppler broadening can be precisely recovered by direct transformation of experimental optical heterodyne spectral profile.
The optical fiber nanoprobe is prepared using spark fused taper and acid corrosion methods. With 3-ami-nopropyltrimethoxysilane coupling, gold nanoparticles are solidified onto the surface of fiber optic and then the optical fiber sensor is prepared using the surface-enhanced Raman spectroscopy (SERS) measurement of the cell solution. The SERS of the esophageal cancer cell solution is measured by direct detection and fiber detection methods. Similar results are obtained by both detection methods. SERS measurement of tissues and organs is done using the optical fiber sensor.
The quantitative analysis of X-ray fluorescence (XRF) spectra is studied using the partial least-squares (PLS) method. The characteristic variables of spectra matrix of PLS are optimized by genetic algorithm. The subset of multi-component characteristic spectra matrix is established which is corresponding to their concentration. The individual fitness is calculated which combines the crossover validation parameters (prediction error square summation) and correlation coefficients (R2). The experimental result indicates that the predicated values improve using the PLS model of characteristic spectra optimization. Compared to the nonoptimized XRF spectra, the linear dependence of processed spectra averagely decreases by about 7%, root mean square error of calibration averagely increases by about 79.32, and root mean square error of cross-validation averagely increases by about 14.2.
We develop optical fiber nanoprobe by spark fused taper and acid corrosion methods. By coupling with 3-aminopropyltrimethoxysilane, gold nanoparticles are solidified onto the surface of fiber optic and then the optical fiber sensor is prepared using surface-enhanced Raman spectroscopy (SERS) measurement of the cell solution. The SERS of the esophagus cancer cell solution is then measured by direct detection and fiber detection methods, and the relationship between SERS fiber detection and the length of optical fiber ensor is studied. This is helpful for the SERS measurement of tissues and organs using the optical fiber sensor.
We study ionic structure of KNO3–NaNO2 melts under air atmosphere by using Raman spectroscopy. Molar fraction of NO3- and NO2- is obtained and thermal stability of this kind of melts system is then analyzed. The results show that when the temperature is increased to a certain value, equilibrium between the decom-position of NO3- and the oxidation of NO2- exists in KNO3–NaNO2 melts. When temperature is higher than 644 K, the molar fraction of NO3- decreases a little with temperature increasing for the melts in which the initial fraction of KNO3 is 90 wt%, but for the melts in which the initial fraction of KNO3 is 10–80 wt%, the molar fraction of NO3- increases with temperature, and the increasing rate is slower for a higher initial frac-tion of KNO3. Molar fraction of NO3- increment increases linearly with initial fraction of NaNO2. The sample in which the initial fractions of NaNO2 are 11.3 and 14.5 wt% under air atmosphere shows the best thermal stability at 762 and 880 K, respectively.
Core mineral spectrometer is one of the advanced and important tools for core digitalization, altered mineral mapping, ore deposits exploring, and ore-searching in surrounding mine and beneficiation process. In this letter, a new core mineral spectrometer (CMS 350) is designed and developed. The basic principle, structural design, function module, key components, data acquisition, and processing methods of CMS 350 are introduced. In addition, some applications and results of CMS 350 in Zijin Mining are presented to validate the performance of CMS 350.
Laser-ablation laser-induced breakdown spectroscopy (LA-LIBS) based on single Nd:YAG laser is used to analyze copper impurity in silver jewellery with enhanced sensitivity and minimal sample ablation. 6-30 folds signal enhancement can be achieved under the re-excitation of the breakdown laser and the spatial resolution is only determined by the ablation laser. 50 ppm limit of detection of copper is achieved when the crater diameter is 17.2 \mu m under current experimental condition. This technique gives higher analysis sensitivity under the same sample ablation in comparison with single pulse (SP) LIBS. It is useful for high sensitive element microanalysis of precious samples.
A polymethyl-methacrylate (PMMA) acrylic sample cell using flow injection is developed in this research for the determination of nitrite in an aqueous media. The research focuses on exhibiting direct absorbance spectrophotometry of nitrite using concentration of samples ranging from 0.1078 to 1.725 ppm. Nitrite determination is done colorimetrically using the Greiss reagent method. This method is based on the reaction of nitrite with sulphanilamide acid and N-1-napthylamine (NED) utilizing diazo coupling, and a syringe is used to administer the nitrite solution. The sample cell being used possesses a diameter of 1 mm with an overall size of 7.35×22 mm2. To gauge the direct absorbance, a wavelength range from 400 to 650 nm has been selected for the testing, and the maximum absorbance is found to be at 545 nm. The validity of the proposed cell is explained in this letter.
A novel high-throughput spectrometer with a wide-slit is presented. In conventional spectrometers, the slit limited the light throughput. Here, the slit is replaced with a much wider one (200 μm) to increase throughput. A beam splitter is utilized to construct a dual-path optics to measure both non-dispersed and dispersed light intensity which comes from the wide-slit. While the dispersed light intensity is result of the non-dispersed light convoluted spectrum of the source, the spectrum can be acquired by solving the inverse problem of deconvolution. Experiments show that the reconstructed spectra achieved almost the same resolution measured by traditional spectrometer, while throughput and peak signal-to-noise ratio (PSNR) are improved dramatically.
In trace Li analysis with degenerate four-wave mixing (DFWM) method, acid anions and major metallic elements are dominant interferences in Li-containing samples. To better use DFWM technique to analyze trace Li in actual samples, we study their effects on Li DFWM signal intensity. It is found that K, Cs, and Ni can enhance the Li DFWM signal, SO2-4..., PO3-4..., Cl-, and Ca can cause significant suppression, and NO3-, Mg, Ba, Sr, and Na almost have no effects. Finally, we use H3BO3 to eliminate the depressive effects of chlorides on Li DFWM signal. The result is also of reference in other trace elements analysis with DFWM.
Nonlinear correlation between attenuation and absorption due to the presence of scattering is the main reason for inaccurate spectroscopic quantitative investigations. The polarization subtraction methods are applied to reduce the scattering in order to linearise attenuation to absorption. Monte Carlo simulation shows that the polarized light offers better performance than unpolarized light at giving the most accurate estimate of the concentration ratio of absorbers using the modified Lambert-Beer law. Our results demonstrate that spectrophotometry with polarized technique offers the potential to be a simple and costeffective system.
The structural, morphological, optical, and nonlinear optical properties of a lead sulfide (PbS) thin film grown by chemical bath deposition (CBD) are investigated by X-ray diffraction (XRD), scanning electron microscope (SEM), ultraviolet-visible (UV-Vis), and open aperture Z-scan experiments. The band gap energy of the PbS nanocrystalline film is 1.82 eV, higher than that of bulk PbS at 300 K. The nonlinear absorption properties of the film are investigated using the open aperture Z-scan technique at 1064 nm and pulse durations of 4 ns and 65 ps. Intensity-dependent switching of the film from nonlinear absorption to saturable absorption is observed. The nonlinear absorption coefficient increases monotonically with increasing pulse duration from 65 ps to 4 ns.
Graphene oxide (GO)/Ag nanoparticle (NP) hybrids are obtained by in situ reduction of Ag NPs on GO sheets. In this letter, the influence of the conformation of GO sheets on the surface-enhanced Raman scattering (SERS) effect of GO/Ag NPs is investigated by covalently grafting folic acid (FA) molecules onto graphite sheets. SERS measurements are conducted in aqueous solutions with different pH values. Data show that the SERS signals of FA are pH dependent, consistent with the morphological changes of GO sheets.
An adaptive filter for cancelling noise contained in the direct absorption spectra is reported. This technique takes advantage of the periodical nature of the repetitively scanned spectral signal, and requires no prior knowledge of the detailed properties of noises. An experimental system devised for measuring CH4 is used to test the performance of the filter. The measurement results show that the signal-to-noise (S/N) value is improved by a factor of 2. A higher enhancement factor of the S/N value of 5.4 is obtained through open-air measurement owing to higher distortions of the raw data. In addition, the response time of this filter, which characterizes the real-time detection ability of the system, is nine times shorter than that of a conventional signal averaging solution, under the condition that the filter order is 100.
We describe the application of incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS) for in situ measurements of atmospheric NO2 using a blue light-emitting diode. The mirror reflectivity is determined by the transmitted intensity variation through the cavity caused by Rayleigh scattering. Concentrations of atmospheric NO2 (1 to 35 ppbv) during the seven-day period are retrieved from the absorption spectra. The IBBCEAS measurement data are compared with those of a commercial long path differential optical absorption spectroscopy. The linear regression has a correlation coefficient and a slope of 0.983 and 0.975, respectively.
Laser-induced breakdown spectroscopy (LIBS) is used to determine the total nitrogen (TN) and total phosphorus (TP) in soil. Quantitative determinations are conducted using the line intensity of the analyte element and element concentration. Calibration models are obtained using ten samples for TN and seven samples for TP. The rest samples are used to validate the results. Strong linear correlations are obtained from the determined TN and TP concentrations. LIBS is a powerful tool for analyzing soil samples to determine nutrient elements by selecting calibration and validation samples with similar matrix composition.
We propose a new Fourier transform spectrometer based on programmable microelectromechanical systems (MEMS) micro-mirror and an improved Michelson interferometer. The principle of the spectrometer is theoretically analyzed. A signal acquisition unit and an experimental set-up are designed. The spectrum of the polychromatic light source is obtained at a slantwise reflector angle of 0.238o. The spectrum is analyzed by this system within the near infrared. The experimental results show that the spectral accuracy is less than 3 nm, and the signal-to-noise ratio (SNR) is 18 dB. The spectral resolution is less than 16 nm.
Repetition rate-dependent absorbance measurements of synthetic fused silica at 193-nm irradiation are performed in the range of 50–1 000 Hz with an ArF laser calorimeter. The "apparent" single- and twophoton absorption coefficients are determined by measuring the laser fluence-dependent absorbance of fused silica samples with different thicknesses to separate the surface absorption and bulk absorption. The measurement results indicate a reversible nonlinear increase of both apparent single- and two-photon absorption coefficients with increasing repetition rate for the synthetic fused silica, whereas the surface absorption shows no dependence on the repetition rate.
Noninvasive technology for measuring instantaneously two-dimensional (2D) temperature distributions of flame using two-color planar laser induced fluorescence (PLIF) of OH is investigated. A calibration method is researched and developed. This method is based on the calibration experiments with a laminar premixed flame and thermocouple, and avoids complex calculation and uncertainty of the spectrum parameters. Measurements for a flat burner at ambient temperature under atmospheric pressure are also presented; calibration results are used to diagnose a supersonic combustion in scramjet combustor. The conclusion indicates that this method is useful, and a better precision of calibration can be acquired by correcting the line shapes of the spectral lines and lasers.
Cephalosporins are widely used as veterinary and human antibiotics. However, cephalosporin abuse is harmful to human health and causes allergic reactions or antibiotic resistance. We investigate a method featuring Raman spectroscopy and chemometrics to quantify mixture solutions of three typical cephalosporins, namely, ceftriaxone, cefotaxime sodium, and cefazolin sodium. Partial least-squares regression models are built on spectral data that are preprocessed by various methods. With prediction relative errors within 5% and high correlation coefficients of 0.998, we demonstrate that Raman spectroscopy combined with multivariate analysis is feasible for use in the quantitative determination of cephalosporin solutions.
According to the X-ray fluorescence (XRF) spectral characteristics of heavy metals in soil, the application of XRF spectra de-noising using biorthogonal wavelet packet transform technology is analyzed. Wavelet pack decomposition and threshold setting are particularly discussed. Through spectra de-noising, the linear fitting relationship between concentration and intensity of Ni is meliorated. Experimental results demonstrate that this method can effectively overcome the noise interference and preserve characteristic spectra. This method is very useful to increase the accuracy of quantitative analysis, especially for analyzing trace elements in soil.
Time-resolved femtosecond coherent anti-Stokes Raman spectroscopy (fs-CARS) is utilized to measure the methane/oxygen/nitrogen flame temperature at atmospheric-pressure. The measurements are performed using the CARS signal of N2 with 40-fs laser pulses in the first few picoseconds after the initial in-phase excitation. Flame temperatures at 300 and 1 325 K are measured, the experimental results show good agreements with theoretical ones and present a good repeatability.
The influence of varied water distribution in different locations of the mesophyll and mid-vein of the same leaf on the absorption and refraction coefficient is described. And the further comparisons between green leaf and yellow leaf reveal that the complex permittivity of leaf can provide important information about the water content and can characterize the changes of the water distribution of the leaf. So our measurements tend to demonstrate that the dielectric material parameters will be employed to determine the leaf water status in plant leaves.
Based on the floating reference theory, a new method for extracting the net analyte signal (NAS) is proposed. The noise background subspace is spanned by spectra at the floating radial reference point, and then, the spectra at the measurement point are projected on the subspace. Thereafter, the glucose concentrations in intralipid solutions are investigated through Monte Carlo simulation and experiments, and the partial least squares (PLS) models with and without NAS analysis are built. The root mean square errors of calibration and prediction reach to 28.87% and 27.33%, respectively. The results confirm the existence of information induced by glucose concentration variations as well as the validity of the floating reference theory.
A spinel LiMn2O4 is investigated via Raman spectroscopy at 514.5-nm excitation and X-ray diffraction. The dependence of Raman spectra on the different irradiated laser powers is determined and found to be different from that at 632.8-nm excitation. Based on our extensive analysis, our experimental results can be attributed to the laser heating effect, which reduces the Mn4+ cation concentration in the local area. Consequently, the decrease in average Mn valence in the local area unavoidably induces the Jahn-Teller effect and local lattice distortion, which accounts for the evolution of the measured Raman spectra of spinel LiMn2O4.
Two detection techniques of broadband terahertz (THz) time-domain spectroscopy-THz air-biased coherent detection (THz-ABCD; from 0.3 to 14 THz) and electro-optical (EO) detection (from 0.3 to 7 THz) - are both performed at several different relative humidity levels. The THz power exponentially decays with the increase in relative humidity. The dynamic range of the main pulse in the time domain linearly decreases as the relative humidity increases from 0% to 40%, and linear fittings show that the slopes are -0.017 and -0.019 for THz-ABCD and EO detection, respectively. Because of the multiple reflections caused by the crystal in the common EO detection, THz-ABCD has better spectral resolution (17 GHz) than that of EO detection (170 GHz). The spectrum of water vapor absorption measured by THz-ABCD is also compared with that measured by the Fourier transform infrared spectroscopy (FTIR).
A modified wavelength modulation spectroscopy (WMS) based on the self-heating effect of the tunable diode laser when driven in quasi-continuous-wave (QCW) mode is investigated. A near-infrared distributed feedback (DFB) diode laser working at the QCW mode is employed as the QCW light source, and CO2 is selected as the target gas. The characteristic of the QCW second harmonic (2f) line profile is analyzed through a comparison with that of the traditional CW WMS with the same system. A noise-equivalent absorbance of 3.2×10 5 Hz 1/2 for CO2 at 1.58 \mu m is obtained with 18-m optical path. The QCW WMS lowers the dependence on lasers and expands selectivity, thus verifying the feasibility of the method.
We propose a rapid spectral matching method by lowering number of comparisons, processing time can be saved. Firstly, 1-norm is chosen as length measure of spectrum, and with this criterion, a 1-norm database is built. Secondly, a subspace is constructed from the whole reference library by retaining the references with the most similar 1-norm values. Finally, matching operations are performed in the subspace to obtain the match result. Simulations of geological mapping with ASTER spectral library show that the proposed method can significantly reduce processing time and enhance accuracy compared with traditional and dimension reduction methods.
Tourmaline is an important functional and gem material. The current study examines pink, green, and brownish-green tourmalines from Altay deposit. Based on X-ray fluorescence (XRF) quantitative analyses and ultrariolet-visible-near-infrared (UV-VIS-NIR) spectral analyses in combination with annealing experiments, the color center of tourmaline is found to be related to the d-d transitions of ions or the d-d transitions of exchange coupled ions. Annealing treatment affects the color improvement of tourmaline crystals.
We investigate reactive fluorine atom spectroscopic characterization in atmospheric pressure of He/SF6 plasma using atomic emission spectrometry. As input radio frequency (RF) power levels are raised from 140 to 220 W, the emission spectra of 685.60 (3p4D-3s4P transition) and 739.87 nm (3p4P-3s4P transition) increase significantly. Moreover, an optimal value of SF6 volume concentration in the production of fluorine radicals, which is 0.8% is achieved. Addition of certain amounts of O2 into He/SF6 plasma results in the promotion of SF6 dissociation. Emission intensities of fluorine atoms show the maximum at the O2/SF6 ratio of 0.4.
Nondestructive Raman spectroscopy and external-beam proton-induced X-ray emission (PIXE) technique to analyze eight ancient glasses unearthed from the provinces of Henan, Hubei, and Jiangsu, which allowes for a good characterization of the glass matrix and chemical compositions, is carried out. The results indicate that all the eight glass samples could be typically divided into three systems: faience (sample No. SZWG-4), PbO-BaO-SiO2 (sample Nos. NYWKI-5-1, HNWKII-88, and HNWKII-84), and Na2OCaO-SiO2 (sample Nos. HBWKI-16, HBWKI-17, HBWKI-18, and SZWG-1). Additional relationships between the Raman spectra and parameters, such as residues of raw materials and opacifying agent, are also discussed by respectively comparing them with similar glass samples excavated from other historical sites.
A novel quantitative analysis method of multi-component mixture gas concentration based on support vector machine (SVM) and spectroscopy is proposed. Through transformation of the kernel function, the seriously overlapped and nonlinear spectrum data are transformed in high-dimensional space, but the high-dimensional data can be processed in the original space. Some factors, such as kernel function, range of the wavelength, and penalty coefficient, are discussed. This method is applied to the quantitative analysis of natural gas components concentration, and the component concentration maximal deviation is 2.28%.
Tunable diode laser absorption spectroscopy (TDLAS) has been widely employed in atmospheric trace gases detecting and industrial control due to its high sensitivity, selectivity, and rapidity of response. An open path TDLAS system is developed for monitoring large scale methane leakage around the oil refinery. The tunable distributed feedback (DFB) diode laser emits at 1.65 um. In order to enhance the sensitivity, a system combining long open path and second harmonic detection technique is developed. The test results show that the time resolution is less than 0.1 second and the detection limit is lower than 3.6 ppmv. This system is adapted for monitoring a large scale methane concentration changing trend instead of measuring its absolute concentration.
A constrained high-order statistical algorithm is proposed to blindly deconvolute the measured spectral data and estimate the response function of the instruments simultaneously. In this algorithm, no prior-knowledge is necessary except a proper length of the unit-impulse response. This length can be easily set to be the width of the narrowest spectral line by observing the measured data. The feasibility of this method has been demonstrated experimentally by the measured Raman and absorption spectral data.
The spectral radiation characteristic of a non-luminous flame is analyzed. The apparatus and the calibration procedure based on infrared emission spectrometry for measurements of the flame are introduced. The influence of background radiation and stray light on the measurement results could be reduced and suppressed by the design of thermolator and digital lock-in technique. A blackbody cavity was used as reference emission source to calibrate the system that completed absolute measurement. The spectral measurement range is 1---20 μm. The least measuring distance and the lowest power detected at the entrance pupil are 550 mm and 10^(-9) W/cm2, respectively. The experimental results show that the measure error is less than 10%.
The spectral behavior of polychromatic spatially fully coherent light diffracted by an annular aperture in the far field is studied. It is shown that the spectrum in the far field is generally different from that at the aperture, i.e., the spectrum in the far field is proportional to the spectrum at the aperture and a spectral modifier, which depends on the central obstruction ratio ε and diffraction angle θ. Detailed numerical calculation results indicate that significant spectral changes take place in the vicinity of zeros of the Airy pattern. It is found that at the critical diffraction angle θc, the spectrum is split into two lines, while at a diffraction angle a little smaller than θc, the spectrum is red-shifted, and at a diffraction angle a little larger than θc, the spectrum is blue-shifted. The influence of the central obstruction ratio on the spectral anomalies is presented.
An external-cavity diode laser (ECDL) has been used to investigate pressure-induced self-broadening as well as frequency shift of 2ν3 band R9 manifold of methane. A phase sensitivity detection technology has been employed to determine the pressure induced frequency shift coefficient, however, which is obtained by line shape analyses of the recorded absorption spectrum. F1 and F2 unresolved double lines near 6105.626 cm^(-1) were measured as an object because they are often used to the high sensitivity detection of trace methane. The results show that the self-broadening and pressure induced frequency shift coefficients are 0.0232(+-)0.003 and 0.0055(+-)0.0007 MHz/Pa, respectively.
The photo-acoustic (PA) spectrum of nitrogen dioxide (NO2) in the range of 420-520 nm with a Nd:YAG pumped optical parametric generator and amplifier as radiation source is presented. The spectrum has a characteristic of banded structure superimposed on continuum. The banded structure of the spectrum can be assigned to NO2 B2B1<--X2A1 transition. While the continual one comes from the chaos states of the first excited state A2B2 and the high vibration levels of the ground state X2A1. The relationship of PA signal with buffer gas pressure and NO2 concentration is measured. The PA signal intensity increases with buffer gas pressure and almost is invariable when the buffer gas pressure is more than 3.00*10^(4) Pa. The PA signal intensity has linearity with NO2 concentration. The detection limit is about 2*10^(-5) on the basis of SNR = 1, however lower value of the detection limit can be expected by improving the apparatus properties.
The infrared spectrometry contains multiple information of the sample, and it is easy to be applied to on-line measurement. To Chinese medicine, this technology can improve the standard of quality control and accelerate the modernization course. In this paper, we investigate the spectral characteristics of borneol, an effective ingredient in many Chinese medicines. The following results are achieved. In middle infrared (MIR) region, utilizing the linear relationship between absorption and concentration, the concentration of borneol with relative error within 4.30% in the strongest absorption region (2950-2970 cm(-1)) is measured; in near infrared (NIR) region, the predicted concentrations of borneol are calculated by using partial least squares (PLS) regression analysis, in which the wavelengths are selected by genetic algorithm (GA) from the absorption bands of borneol in NIR region. The predicted relative error of calibration model is less than 2%. This result shows that PLS regression analysis combining genetic algorithm is a good method to improve prediction and reduce data in NIR region.
The clusters of Eu^(3+) ion in Eu(DBM)3Phen-doped polymethyl methacrylate (PMMA) have been studied by three means. The relative fluorescence intensity ratio of the 5D0 -> 7F2 to 5D0 -> 7F1 transitions with different concentrations of Eu^(3+) in Eu(DBM)3Phen-doped PMMA and metastable-state (5D0) lifetime dependence on Eu^(3+) concentration are analyzed. The analysis indicates that there are no clustering effects in Eu^(3+) ions of Eu(DBM)3Phen-doped PMMA when the Eu^(3+) doping concentration is up to 1.0 wt.-%. At the same time, the clustering effect has not been observed by the scanning near-field optical microscopy (SNOM) in Eu(DBM)3Phen-doped PMMA with 1.0 wt.-% of Eu^(3+) ions. The analysis reveals that a high concentration of Eu^(3+) can be incorporated into polymer optical fiber (POF) without clustering effect.
The principle of step-scan Fourier transform infrared (FTIR) spectroscopy is introduced. Double modulation step-scan FTIR technique is used to obtain the quantum cascade laser's stacked emission spectra in the time domain. Optical property and thermal accumulation of devices due to large drive current are analyzed.
The spectral changes of a partially coherent polychromatic light focused by an apertured lens with chromatic aberration are investigated. It is demonstrated that the spectrum in the focused field is different from that in the aperture. Comparing with the spectrum in the aperture, the spectrum in the focused field shifts to lower or higher frequency, which is defined as a spectral shift. The influence of chromatic aberration of the lens, the coherence of the partially coherent light in the aperture, the radius of the aperture, and the spectral width of the spectrum of the aperture on the spectral shift are investigated in detail. The numerical results show that these parameters affect the spectral shift noticeably.
We discuss and calibrate the spectrometry system based on concave reflection grating. The working principle, structure and parameters of the spectrometry system are introduced. For the wavelength calibration problem, three methods are put forward and discussed in detail with formulation calculation method, circular iteration method and interpolation. Interpolation is used to calibrate the concave reflection grating spectrometry system and the error is less than 1 nm. Four spectrum images that the system collected are given in this paper. The experimental results indicate that a spectrometry system can be based on concave reflection grating and be calibrated by interpolation.
In this paper, the Raman spectrum signal de-noising based on stationary wavelet transform is discussed. Haar wavelet is selected to decompose the Raman spectrum signal for several levels based on stationary wavelet transform. The noise mean square {sigma}_j is estimated by the wavelet details at every level, and the wavelet details toward 0 by a threshold {sigma}_j (2\ln n)^{1/2} , where n is length of the detail, then recovery signal is reconstructed. Experimental results show this method not only suppresses noise effectively, but also preserves as many target characteristics of original signal as possible. This de-noising method offers a very attractive alternative to Raman spectrum signal noise suppress.
The cavity enhanced absorption technique is applied to N2O detection around 2.86 μm using a continuouswave color center laser. A high-finesse triangular ring cavity is used in this technology. Transmission through the cavity is obtained by jittering the cavity-length with a piezo on one of the cavity mirrors. A minimum detectable absorption coefficient of 2 * 10^(-6) cm^(-1) is achieved with a mirror reflectivity of 99.24%, corresponding to a N_(2)O detection limit of 600 parts per billion.